214 research outputs found

    Mimicry technology : a versatile tool for small RNA suppression

    Get PDF
    A decade ago the discovery of the target mimicry regulatory process on the activity of a mature microRNA (miRNA) enabled for the first time the customized attenuation of miRNA activity in plants. That powerful technology was named MIMIC and was based on engineering the IPS1 long noncoding transcript to become complementary to the miRNA under study. In order to avoid IPS1 degradation, the predicted miRNA-mediated cleavage site was interrupted by three additional nucleotides giving rise to the so-called MIMIC decoy. Since then, MIMIC technology has been used in several plant species and in basic and translational research. We here provide a detailed guide to produce custom-designed MIMIC decoys to facilitate the study of sRNA functions in plants

    Genome-wide profiling of uncapped mRNA

    Get PDF
    Gene transcripts are under extensive posttranscriptional regulation, including the regulation of their stability. A major route for mRNA degradation produces uncapped mRNAs, which can be generated by decapping enzymes, endonucleases, and small RNAs. Profiling uncapped mRNA molecules is important for the understanding of the transcriptome, whose composition is determined by a balance between mRNA synthesis and degradation. In this chapter, we describe a method to profile these uncapped mRNAs at the genome scale

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    Regulatory feedback response mechanisms to phosphate starvation in rice

    Get PDF
    Phosphorus is a growth-limiting nutrient for plants. The growing scarcity of phosphate stocks threatens global food security. Phosphate-uptake regulation is so complex and incompletely known that attempts to improve phosphorus use efficiency have had extremely limited success. This study improves our understanding of the molecular mechanisms underlying phosphate uptake by investigating the transcriptional dynamics of two regulators: the Ubiquitin ligase PHO2 and the long non-coding RNA IPS1. Temporal measurements of RNA levels have been integrated into mechanistic mathematical models using advanced statistical techniques. Models based solely on current knowledge could not adequately explain the temporal expression profiles. Further modeling and bioinformatics analysis have led to the prediction of three regulatory features: the PHO2 protein mediates the degradation of its own transcriptional activator to maintain constant PHO2 mRNA levels; the binding affinity of the transcriptional activator of PHO2 is impaired by a phosphate-sensitive transcriptional repressor/inhibitor; and the extremely high levels of IPS1 and its rapid disappearance upon Pi re-supply are best explained by Pi-sensitive RNA protection. This work offers both new opportunities for plant phosphate research that will be essential for informing the development of phosphate efficient crop varieties, and a foundation for the development of models integrating phosphate with other stress responses

    Regulation of Gene Expression in Plants through miRNA Inactivation

    Get PDF
    Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA) sites embedded in either non-protein-coding or within the 3′ untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants

    Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small and noncoding RNAs that play important roles in various biological processes. They regulate target mRNAs post-transcriptionally through complementary base pairing. Since the changes of miRNAs affect the expression of target genes, the expression levels of target genes in specific biological processes could be different from those of non-target genes. Here we demonstrate that gene expression profiles contain useful information in separating miRNA targets from non-targets.</p> <p>Results</p> <p>The gene expression profiles related to various developmental processes and stresses, as well as the sequences of miRNAs and mRNAs in <it>Arabidopsis</it>, were used to determine whether a given gene is a miRNA target. It is based on the model combining the support vector machine (SVM) classifier and the scoring method based on complementary base pairing between miRNAs and mRNAs. The proposed model yielded low false positive rate and retrieved condition-specific candidate targets through a genome-wide screening.</p> <p>Conclusion</p> <p>Our approach provides a novel framework into screening target genes by considering the gene regulation of miRNAs. It can be broadly applied to identify condition-specific targets computationally by embedding information of gene expression profiles.</p

    Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato

    Get PDF
    Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients

    A modular analysis of the Auxin signalling network

    Get PDF
    Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF) and Aux/IAA (IAA) transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants

    How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?

    Get PDF
    Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated
    corecore